Dynamic Matching
in Overloaded Waiting Lists

Jacob D. Leshno
Columbia Business School

Chicago Public Housing

» The Chicago public housing

authority runs approx 20,000
Park Ridge \J
apartments, spread throughout L

the Cit)’ | Park
" Qak Park

» 60,000 applicants wait to be —
assigned on the capped waiting | e

list

Bridgeview

» Apartments become available surbank Oak Law @
stochastically over time as fillls & Nalsip East

Kk Dolton "Calumet Chicagc
current tenants move out H City
aNﬁXap data ©2011 Google

Example: private vs. social

» Two agents a4, a, with equal waiting costs,

a, prefers N, a, prefers §
» S item arrives in period 1 and N item arrives in period 2

Possible allocations:

L aqgets N,a, gets S and a, waits
I aqgetsS, a, gets N and a, waits

» [.is socially optimal, but a; may prefer //.

Dynamic Allocation

» WVaiting lists, items arrive stochastically over time
Public housing

Organs for transplant
Nursing home spots
Daycare centers,...

» Welfare depends on the matching of items to agents

Agents have different preferences, which are private information
For example: location of family, work, school

Overloaded system — a matching agent is in the system, but need to
ask agents to search for one

Impatient agents may misreport preferences to get assigned earlier

» How should we assign items dynamically to maximize
welfare?

Talk Outline

» Model
2 types of agent, 2 kinds of items
» Analyze a benchmark policy
Tractable formula for welfare
» Derive optimal policy
New queueing policy: the uniform-wait (UW) queue
» Simple robust policy

Give priority to agents who decline an item, and run a uniform
lottery between them (SIRO)

» Extensions

Model

» Infinite pool of agents
Private types: a w.p. Py, or B w.p. Pg =1—F,

|dentical per period waiting cost ¢

Item valuations: - [T R
a 1 v

5 % 1

» One item, A or B, arriving each period
A with probability P4, or B with probability P, = 1 — P,4
ltems must be assigned in the period they arrive

» For simplicity, no structural imbalance: P, = P, = p

Welfare

We aim to maximize welfare, defined as the sum of agent
utility gains

Lemma: Maximizing welfare is equivalent to minimizing
misallocation

Intuition:
Overloaded system
= One agent assigned, all others must wait

= Can only shift waiting time between agents

Literature

» Queueing;
Congestion costs: Naor (1969), Hassin and Haviv (2006)

Organs: Zenios (1999), Su and Zenios (2004,2005), Alagoz,
Mailllart, Schaefer, Roberts (2007)

Public housing: Kaplan (1986,8), Talreja and Whitt (2008),
Caldentey, Kaplan,Weiss (2009)

» Dynamic market design: Unver (2010), Abdulkadiroglu and
Loertscher (2007)

» Dynamic mechanism design: Bergermann and Said (2010),
Gershkov and Moldovanu (2008, 10), Lavi, Nisan (2005), Pavan,
Segal, Toikka (2010)

» Rationing and Misallocation: Barzel (1974), Glaeser and
Luttmer (2003)

No Choice Policy

» A mechanism that does not allow agents to express their
preferences will result in random assignment

For example, not allowing to decline apartments

» The probability of mismatch:

grand = p Py + Py P,

2p(1—p)

Benchmark Policy — FCFS

Single line for both goods, agents can decline and keep place
in line

» Agents exogenously join and wait for both A and B

» Offer items according to First Come First Served (FCFS)
order

» When offered, agents can choose :
Take offered item

Decline item and keep position

» Agents know their position in both waiting lists

FCFS - a’s Choice

» Take current mismatched (B) item:

U,(Current B) = v

» Decline B, and stay first:

1
E|U,(wait for A)|=1—c XE

FCFS - a’s Choice

» Take current mismatched item:

U,(Current B) = v

» Decline B, keep k-th position:

k
E|U,(wait for A)|k—th position] =1 —c¢ X -

~ join the k-th position of a buffer-queue for A

» Decline and avoid mismatch only if

1—v

ksz(a{p |=1pw

Maximal Size of the Buffer-Queue

Waiting times per entry position (p=1/2)

|12
£ 10 .
=
e 8 -
B 1—v
f 6 = W =
= c
g 4 5
@
% pl u
L m FCFS

O [[[[|

I 2 3 = KFCFS 4 5
position

(# agents after join)

FCFS — System Dynamics

» Proposition: The dynamic behavior of the system can be
captured by the state of the buffer-queue (agents who
declined items)

Waiting agents who previously declined are of a single type
Number of a agents < K|,
Number of § agents < Kp

System is Markovian with the state space:

S={-Kg,..,—1,0,1,2,.., K}

State k>0 indicates k a-agents declined and are waiting for an A

System Dynamics

Weltare under FCFS

» Expected welfare loss under FCFS buffer-queue:

WFLpcps = (1 —v)¢ FCES

2p(1—p)
Ko(1—p)+Kgp +1

=(1—-v)

where by the IC

1—v‘

1—v‘
C

K= | -p)—

Ka:{p

FCFS — Welfare Loss from Mismatch

S

% welfare loss

-2

| 0.4
C—Olp—1/2

Optimal Buffer-Queue

Can we do better?
» Stationary mismatch probability depends only on the buffer-
queue lengths:

2p(1—p)
Ko(1—p)+Kgp+1

é =

» Design a buffer-queue policy to get higher K, Kz
Avoid mismatch by placing up to K, or Kp agents in buffer-queue

Search for matching agents until buffer-queue is full
Size limited by incentive constraints - agents must be willing to join

Optimal Buffer-Queue

» The buffer-queue is Incentive Compatible if the expected
wait wy, at position k < K satisfies:

l—c-wp=2v

_ 1-v
or Wkﬁw=7

» Can optimize the A buffer-queue independently

» We reduced the problem to finding a policy for the buffer-
queue that minimizes balking (i.e. minimizes taking mismatch
instead of waiting)

Can we do better?

Waiting times per entry position (p=1/2)

|12
£ 10 .
=
e 8 -
B 1—v
f 6 = W =
= c
g 4 5
@
% pl u
L m FCFS

O [[[[|

I 2 3 = KFCFS 4 5
position

(# agents after join)

21

Can we do better?

Waiting times per entry position (p=1/2)

|2
€10
|
2 8
k= I l 1—v
(;U 6 A — W =

C

: I
g 4
@
) L
L m FCFS

O [[[[|

I 2 3 = KFCFS 4 5
position

(# agents after join)

22

Buffer-Queue Policies

» (K, @) queue policy
Up to K agents on the buffer-queue
Assign item w.p. @(k, i) to agent in position i when k agents
are on the buffer-queue
Examples:
o(k,1) =1 = FCFS
o(k,k) =1 = LCFS

23

Upper Bound

» Lemma: Expected wait for a random position is
independent of assignment probabilities:

K+1
E[W;}]=7

» Proposition: There is no incentive compatible policy with

K>K*=|2pw|—1

24

Prootf of Lemma:

» Limit attention to when the A-queue is not empty
» Conditional probability of having k agents waiting is 1/K

» By Little’s law

K
E[w,] = El#agents waiting] 1 2 k
Wil = arrival rate p — K

K+1

2p

25

Proof of proposition:

» For any IC policy (K, @) we have for every k:

Wi, <w
Therefore, expected IC holds:

_K+1

[T]

<
=

I

<w

giving

26

Optimal Policy

4

To achieve the upper bound, no position can have an
expected wait that is greater than average (expected for
random position)

Therefore, to get the optimal incentive compatible buffer-
queue policy we need all position to have the same
expected wait

This requires a new queueing policy, which we name the
Load Independent Expected Wait (LIEW) queueing policy

A New Queueing Policy

Definition: A (K, ¢) queue policy is a LIEW[K] policy if for

e K+1
all k < K the expected wait at join is w;, = et

Theorem: The LIEWV policy is the optimal buffer-queue

policy.

28

-

EW Buffer-Queue

Waiting times per entry position

|2
£ 10 .
i:
e 8 o
B
g 6 O O © © ©
©
g 4 m
(]
3
52 | m FCFS
® LIEW
0 T T T T |
I 2 3 = KFCFS 4 5 = KOPT

position
agents after join
(# ag j

29

Mechanisms — Welfare Loss Comparison

12

’ \\\\\\
. 8 \
(@)
-
()]
|
g ¢ - FCFS
g NN - LIEW[K]
% 4

2

0

0 0l 02

c=01p=1/2
30

Designing the LIEW policy

Which assignment probabilities generate a LIEW queue?

4 Let W — (Wl, WK)

1

» Setting ¢ = 1 0 . gives FCFSand w-p = (1,2,..,K)
i 0 | 0
1

» Setting @ = O 1 . gives LCFSand w-p = (K,..,2,1)
6 0 1

» Take ¢ to be “in between”

31

Designing the LIEW Queue

1
=11 O
1 0 O

wep =(1,2,3)

Start with wy:

32

Designing the LIEW Queue

Start with wy:

33

Designing the LIEW Queue

Start with wy:

1
B 1 1—p
Tl2=p 2-p
0 1 0

_’—2212+1
L T

34

Designing the LIEW Queue

Shifting continuously from FCFS to LCFS to get the LIEW
assignment probabilities:
1
/ 1 1—1p \

. - R 1-v 2
» Achieves K = 3 when agents are willing to wait w = — = >

35

LIEW Policy - Issues

» Complicated

» Agent’s belief matters

An agent will not join the queue if his belief is that following
agents will join as well

» Parameter dependent
Designer needs to know p and set K~

Performs poorly when if parameters are wrong

36

Robust Buffer-Queue

Optimize the buffer-queue while maintaining robustness

» Sdafe for agents: incentive compatible for agents to join,
regardless of their belief about the waiting list

Implies that agents do not regret joining if other agents join
after them

» Simple for designer: a single scalable mechanism that
applies to multiple environments

A Policy for any Buftfer-Queue Size

» Scalable policy: A scalable policy (¢) is given by weights

Vi

stk Vj

{Vi}i<oo such that @(k,i) =

» “Same” randomization for any queue size.

» The mechanism can react to the parameters of the
envioronment (v, ¢) only by adjusting the maximal size of

the buffer-queue K.

38

Belief Free IC

» A policy (@) with maximal size K is Belief free IC if for any
belief o on following types
wg < w

Dominant strategy to report truthfully — agents are willing to decline
mismatch regardless of their belief on the joining of future agents

Satisfied by FCFS

» Lemma: a policy is BF-IC if and only if it is ex-post BF-IC, that is

the expected wait for an agent in position i out of k is

O' —_—
Wi = W

39

Comparing Mechanisms

» We want to compare mechanisms without
assumptions on the environment

» Let K,(W) be the maximal K for which ¢ is BF-IC

» Definition: () dominates () if there is w, such that for
every w < wy we have x,(w) = K, (1) with strict
inequality for some w < wy,.

Better, or at least of length K, (w,)

Increasing buffer size is most important when buffer is small

Need to be optimal for K + 1 conditional on being optimal for
1,..,K

40

SIRO - Service In Random Order

» Equal probability to each waiting agent: ¢(k,i) = %

/1}2 1/2 \
o=|1/3 1/3 1/3

\1(4 1(4 1(4 1(4 /

» Maximizing incentives for last agent to join, while
minimizing regret for agents already on the queue

41

SIRO — Scalable Optimal

Theorem: SIRO is the unique undominated

scalable policy

Proof sketch:
» Optimize for K + 1 conditional on being optimal for K

» Minimize wait for new K + 1 position Wy, 1 g q] < W

» For Bf-IC, wait for other positions is Wf; 1] < W
= treat all agents in the buffer-queue the same (ex-post)

42

SIRO with K =5

waiting time per entry position (p=1/2)

|12
£ 10 .
i:
2 8 N
‘D A
S 6 = = A : =
% e = FCFS
9 4 A - ® LIEWI[5]
¥
o 4 SIRO(5)
g2

O [[[[|

I 2 3 = KFCFS 4 5 = KOPT

k
(# agents after join)

43

SIRO with K =4

waiting time per entry position (p=1/2)

|2
€10 E
=
g -
£
S 6 e — = - -
3 . v - m FCFS
T &
2 . : o LIEW[5]
8 + SIRO(4)
2o

O [[[[|

| 2 3 =Kpcrs 4 = Ksiro 5 = Kopr
k

(# agents after join)

44

Mechanism Comparison

10 \
\ - FCFS
o LIEW[K]
N\\ RO
2
0

(0 0]

% Welfare Loss
(o)

N

SIRO - properties

» Parameter free
» Simple
No positions in the queue
» No need to restrict joining when agents are symmetric

» Ex post BF-IC — waiting agents can be offered a B

» SIRO achieves better welfare that FIFO, for any

parameters and beliefs

46

Heterogeneous values

» % Welfare loss under mechanisms when v~U|[0,1]:

C FCFS LIEW[4] SIRO

Conclusion

» Welfare in congested waiting lists
Match quality matters, waiting time cancels out
Need to incentivize agents to decline mismatched items

» Tractable analysis by tracking only agents who declined
items

Closed form solutions for the stylized model

Solving for richer environments by simulation methods

48

Conclusion
» The SIRO buffer-queue policy

Lottery gives higher incentives for the marginal agent to
decline a mismatched item,
reducing waiting time fluctuation and misallocation

Safe and parameter free

Thank you.

49

FCFS, t=1

1

faaaaay

A

FCFS, t=1

!

@_@_@_@l

FCFS, t=2

: _@_@_Qul

A

FCFS, t=2

: _@_@_Qul

1
)
LN

A

Dynamic Direct Mechanism

A/B
Item
arrives

State s
updated

Assign/ Ask an

search agent’s type

Assign item
to agent
(via lottery)

Buffer-Queue Mechanism

» A dynamic direct mechanism such that:

Ask agents only if there is no matching agent for the current
item (no asking in advanced)

Always assign waiting agents to their preferred item

Queue based: offers are generated by positions on a queue

55

System Dynamics -transitions

Offer Queue 4

oe oolls

N__ P,
<, 006\900 o
56

System Dynamics -transitions

Offer Queue

(2 X

0000ES
S
Q- B

Pg Py PyPg

@ 000000 0
57

System Dynamics -transitions
Offer Queue

oo ¥

