
Dynamic Matching

in Overloaded Waiting Lists

Jacob D. Leshno

Columbia Business School

Chicago Public Housing

2

 The Chicago public housing

authority runs approx 20,000

apartments, spread throughout

the city

 60,000 applicants wait to be

assigned on the capped waiting

list

 Apartments become available

stochastically over time as

current tenants move out

Example: private vs. social

3

 Two agents 𝑎1, 𝑎2 with equal waiting costs,

𝑎1 prefers 𝑁, 𝑎2 prefers 𝑆

 𝑆 item arrives in period 1 and 𝑁 item arrives in period 2

 Possible allocations:

I. 𝑎1 gets 𝑁, 𝑎2 gets 𝑆 and 𝑎1 waits

II. 𝑎1 gets 𝑆, 𝑎2 gets 𝑁 and 𝑎2 waits

 𝐼. is socially optimal, but 𝑎1 may prefer 𝐼𝐼.

Dynamic Allocation

 Waiting lists, items arrive stochastically over time
 Public housing

 Organs for transplant

 Nursing home spots

 Daycare centers,…

 Welfare depends on the matching of items to agents
 Agents have different preferences, which are private information

 For example: location of family, work, school

 Overloaded system – a matching agent is in the system, but need to
ask agents to search for one

 Impatient agents may misreport preferences to get assigned earlier

 How should we assign items dynamically to maximize
welfare?

4

Talk Outline

 Model

 2 types of agent, 2 kinds of items

 Analyze a benchmark policy

 Tractable formula for welfare

 Derive optimal policy

 New queueing policy: the uniform-wait (UW) queue

 Simple robust policy

 Give priority to agents who decline an item, and run a uniform

lottery between them (SIRO)

 Extensions

5

Model

 Infinite pool of agents

 Private types: 𝛼 w.p. 𝑃𝛼, or 𝛽 w.p. 𝑃𝛽 = 1 − 𝑃𝛼

 Identical per period waiting cost 𝑐

 Item valuations:

 One item, 𝐴 or 𝐵, arriving each period

 𝐴 with probability 𝑃𝐴, or 𝐵 with probability 𝑃𝐵 = 1 − 𝑃𝐴

 Items must be assigned in the period they arrive

 For simplicity, no structural imbalance: 𝑃𝐴 = 𝑃𝛼 = 𝑝

Value: 𝑨 𝑩

𝛼 1 𝑣

𝛽 𝑣 1

6

Welfare

We aim to maximize welfare, defined as the sum of agent

utility gains

Lemma: Maximizing welfare is equivalent to minimizing

misallocation

Intuition:

 Overloaded system

 ⇒ One agent assigned, all others must wait

 Can only shift waiting time between agents

7

Literature

 Queueing:

 Congestion costs: Naor (1969), Hassin and Haviv (2006)

 Organs: Zenios (1999), Su and Zenios (2004,2005), Alagoz,
Mailllart, Schaefer, Roberts (2007)

 Public housing: Kaplan (1986,8), Talreja and Whitt (2008),
Caldentey, Kaplan, Weiss (2009)

 Dynamic market design: Unver (2010), Abdulkadiroglu and
Loertscher (2007)

 Dynamic mechanism design: Bergermann and Said (2010),
Gershkov and Moldovanu (2008,10), Lavi, Nisan (2005), Pavan,
Segal, Toikka (2010)

 Rationing and Misallocation: Barzel (1974), Glaeser and
Luttmer (2003)

 8

No Choice Policy

 A mechanism that does not allow agents to express their

preferences will result in random assignment

 For example, not allowing to decline apartments

 The probability of mismatch:

𝜉𝑅𝑎𝑛𝑑 = 𝑃𝐴𝑃𝛽 + 𝑃𝐵 𝑃𝛼

 = 2𝑝 1 − 𝑝

10

Benchmark Policy – FCFS

Single line for both goods, agents can decline and keep place

in line

 Agents exogenously join and wait for both 𝐴 and 𝐵

 Offer items according to First Come First Served (FCFS)

order

 When offered, agents can choose :

 Take offered item

 Decline item and keep position

 Agents know their position in both waiting lists

 11

FCFS - 𝛼’s Choice

 Take current mismatched 𝐵 item:

𝑈𝛼 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵 = 𝑣

 Decline 𝐵, and stay first:

E 𝑈𝛼 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐴 = 1 − 𝑐 ×
1

𝑝

12

Animation

FCFS - 𝛼’s Choice

 Take current mismatched item:

𝑈𝛼 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵 = 𝑣

 Decline 𝐵, keep 𝑘-th position:

E 𝑈𝛼 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐴 |𝑘−th 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1 − 𝑐 ×
𝑘

𝑝

 ≈ join the 𝑘-th position of a buffer-queue for 𝐴

 Decline and avoid mismatch only if

𝑘 ≤ 𝐾𝛼 = 𝑝
1 − 𝑣

𝑐
 = 𝑝 𝑤

13

Animation

0

2

4

6

8

10

12

1 2 3 4 5

E
x
p

e
c
te

d
 W

a
it

in
g
 T

im
e

position

(# agents after join)

Waiting times per entry position (p=1/2)

FCFS

Maximal Size of the Buffer-Queue

= 𝐾𝐹𝐶𝐹𝑆

14

𝑤 =
1 − 𝑣

𝑐

FCFS – System Dynamics

 Proposition: The dynamic behavior of the system can be

captured by the state of the buffer-queue (agents who

declined items)

 Waiting agents who previously declined are of a single type

 Number of 𝛼 agents ≤ 𝐾𝛼

 Number of 𝛽 agents ≤ 𝐾𝛽

 System is Markovian with the state space:

𝑆 = {−𝐾𝛽 , … , −1 , 0, 1, 2, … , 𝐾𝛼}

 State k>0 indicates k α-agents declined and are waiting for an 𝐴

15

System Dynamics

1 0 𝐾𝛼

−1

0

−𝐾𝛽

1 0 −1 𝐾

−𝐾𝛽

16

Animation

Welfare under FCFS

 Expected welfare loss under FCFS buffer-queue:

𝑊𝐹𝐿𝐹𝐶𝐹𝑆 = 1 − 𝑣 𝜉𝐹𝐶𝐹𝑆

 = (1 − 𝑣)
2𝑝 1 − 𝑝

𝐾𝛼 1 − 𝑝 + 𝐾𝛽𝑝 + 1

where by the IC

𝐾𝛼 = 𝑝
1 − 𝑣

𝑐
 , 𝐾𝛽 = (1 − 𝑝)

1 − 𝑣

𝑐

17

FCFS – Welfare Loss from Mismatch

18

𝑐 = 0.1, 𝑝 = 1/2
𝑣

%
 w

e
lf
ar

e
 l
o
ss

Optimal Buffer-Queue

Can we do better?

 Stationary mismatch probability depends only on the buffer-

queue lengths:

𝜉 =
2𝑝 1 − 𝑝

𝐾𝛼 1 − 𝑝 + 𝐾𝛽𝑝 + 1

 Design a buffer-queue policy to get higher 𝐾𝛼 , 𝐾𝛽

 Avoid mismatch by placing up to 𝐾𝛼 or 𝐾𝛽 agents in buffer-queue

 Search for matching agents until buffer-queue is full

 Size limited by incentive constraints - agents must be willing to join

19

Optimal Buffer-Queue

 The buffer-queue is Incentive Compatible if the expected

wait 𝑤𝑘 at position 𝑘 ≤ 𝐾 satisfies:

1 − 𝑐 ⋅ 𝑤𝑘 ≥ 𝑣

or 𝑤𝑘 ≤ 𝑤 =
1−𝑣

𝑐

 Can optimize the 𝐴 buffer-queue independently

 We reduced the problem to finding a policy for the buffer-

queue that minimizes balking (i.e. minimizes taking mismatch

instead of waiting)

0

2

4

6

8

10

12

1 2 3 4 5

E
x
p

e
c
te

d
 W

a
it

in
g
 T

im
e

position

(# agents after join)

Waiting times per entry position (p=1/2)

FCFS

Can we do better?

= 𝐾𝐹𝐶𝐹𝑆

21

𝑤 =
1 − 𝑣

𝑐

0

2

4

6

8

10

12

1 2 3 4 5

E
x
p

e
c
te

d
 W

a
it

in
g
 T

im
e

position

(# agents after join)

Waiting times per entry position (p=1/2)

FCFS

OPT

Can we do better?

= 𝐾𝐹𝐶𝐹𝑆

22

𝑤 =
1 − 𝑣

𝑐

Buffer-Queue Policies

 𝐾,𝜑 queue policy

 Up to 𝐾 agents on the buffer-queue

 Assign item w.p. 𝜑 𝑘, 𝑖 to agent in position 𝑖 when 𝑘 agents

are on the buffer-queue

 Examples:

 𝜑 𝑘, 1 = 1 ⟹ 𝐹𝐶𝐹𝑆

 𝜑 𝑘, 𝑘 = 1 ⟹ 𝐿𝐶𝐹𝑆

23

Upper Bound

 Lemma: Expected wait for a random position is

 independent of assignment probabilities:

E 𝑤𝑘 =
𝐾 + 1

2𝑝

 Proposition: There is no incentive compatible policy with

 𝐾 > 𝐾∗ = 2𝑝𝑤 − 1

24

Proof of Lemma:

 Limit attention to when the 𝐴-queue is not empty

 Conditional probability of having 𝑘 agents waiting is 1/𝐾

 By Little’s law

E 𝑤𝑘 =
𝐸 #𝑎𝑔𝑒𝑛𝑡𝑠 𝑤𝑎𝑖𝑡𝑖𝑛𝑔

𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒
=

1

𝑝
⋅

𝑘

𝐾

𝐾

𝑘=1

 =
𝐾 + 1

2𝑝

25

Proof of proposition:

 For any IC policy 𝐾,𝜑 we have for every 𝑘:

𝑤𝑘 ≤ 𝑤

Therefore, expected IC holds:

E 𝑤𝑘 =
𝐾 + 1

2𝑝
≤ 𝑤

giving

𝐾 ≤ 2𝑝𝑤 − 1

26

Optimal Policy

 To achieve the upper bound, no position can have an

expected wait that is greater than average (expected for

random position)

 Therefore, to get the optimal incentive compatible buffer-

queue policy we need all position to have the same

expected wait

 This requires a new queueing policy, which we name the

Load Independent Expected Wait (LIEW) queueing policy

A New Queueing Policy

Definition: A 𝐾, 𝜑 queue policy is a 𝐿𝐼𝐸𝑊[𝐾] policy if for

 all 𝑘 ≤ 𝐾 the expected wait at join is w𝑘 =
𝐾+1

2𝑝
 .

Theorem: The LIEW policy is the optimal buffer-queue

 policy.

28

LIEW Buffer-Queue

0

2

4

6

8

10

12

1 2 3 4 5

E
x
p

e
c
te

d
 W

a
it

in
g
 T

im
e

position

(# agents after join)

Waiting times per entry position

FCFS

LIEW

= 𝐾𝐹𝐶𝐹𝑆 = 𝐾𝑂𝑃𝑇

29

Mechanisms – Welfare Loss Comparison

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 W

e
lf

a
re

 L
o

ss

FCFS

LIEW[K]

30

𝑣

𝑐 = 0.1, 𝑝 = 1/2

Designing the LIEW policy

Which assignment probabilities generate a LIEW queue?

 Let 𝑤 = (𝑤1, …𝑤𝐾)

 Setting 𝜑 =

1
1 0
⋮ ⋱
1 0 ⋯ 0

 gives FCFS and 𝑤 ⋅ 𝑝 = (1,2, . . , 𝐾)

 Setting 𝜑 =

1
0 1
⋮ ⋱
0 0 ⋯ 1

 gives LCFS and 𝑤 ⋅ 𝑝 = (𝐾, . . , 2,1)

 Take 𝜑 to be “in between”

31

Designing the LIEW Queue

Start with 𝑤1:

𝜑 =
1
1 0
1 0 0

𝑤 ⋅ 𝑝 = (1, 2, 3)

32

Designing the LIEW Queue

Start with 𝑤1:

𝜑 =
1
0 1
0 1 0

𝑤 ⋅ 𝑝 = (3, 1, 2)

33

Designing the LIEW Queue

Start with 𝑤1:

𝜑 =

1
1

2 − 𝑝

1 − 𝑝

2 − 𝑝
0 1 0

𝑤 ⋅ 𝑝 = (2, 2 −
1

2 − 𝑝
, 2 +

1

2 − 𝑝
)

34

Designing the LIEW Queue

Shifting continuously from FCFS to LCFS to get the LIEW
assignment probabilities:

𝜑𝐿𝐼𝐸𝑊[3] =

1
1

2 − 𝑝

1 − 𝑝

2 − 𝑝

0
1

2

1

2

𝑤 ⋅ 𝑝 = (2, 2, 2)

 Achieves 𝐾 = 3 when agents are willing to wait w =
1−𝑣

𝑐
=

2

𝑝

35

LIEW Policy - Issues

 Complicated

 Agent’s belief matters

 An agent will not join the queue if his belief is that following

agents will join as well

 Parameter dependent

 Designer needs to know 𝑝 and set 𝐾∗

 Performs poorly when if parameters are wrong

36

Robust Buffer-Queue

Optimize the buffer-queue while maintaining robustness

 Safe for agents: incentive compatible for agents to join,

regardless of their belief about the waiting list

 Implies that agents do not regret joining if other agents join

after them

 Simple for designer: a single scalable mechanism that

applies to multiple environments

A Policy for any Buffer-Queue Size

38

 Scalable policy: A scalable policy 𝜑 is given by weights

 𝑣𝑖 𝑖≤∞ such that 𝜑 𝑘, 𝑖 =
𝑣𝑖

 𝑣𝑗𝑗≤𝑘

 “Same” randomization for any queue size.

 The mechanism can react to the parameters of the

envioronment (𝑣, 𝑐) only by adjusting the maximal size of

the buffer-queue 𝐾.

Belief Free IC

39

 A policy 𝜑 with maximal size 𝐾 is Belief free IC if for any

belief 𝜎 on following types

𝑤𝑘
𝜎 ≤ 𝑤

 Dominant strategy to report truthfully – agents are willing to decline

mismatch regardless of their belief on the joining of future agents

 Satisfied by FCFS

 Lemma: a policy is BF-IC if and only if it is ex-post BF-IC, that is

the expected wait for an agent in position 𝑖 out of 𝑘 is

𝑤 𝑖,𝑘
𝜎 ≤ 𝑤

Comparing Mechanisms

40

 We want to compare mechanisms without

assumptions on the environment

 Let 𝒦𝜑 𝑤 be the maximal 𝐾 for which 𝜑 is BF-IC

 Definition: 𝜑 dominates 𝜓 if there is 𝑤0 such that for

every 𝑤 ≤ 𝑤0 we have 𝒦𝜑 𝑤 ≥ 𝒦𝜑 𝜓 with strict

inequality for some 𝑤 ≤ 𝑤0.

 Better, or at least of length 𝒦𝜑 𝑤0

 Increasing buffer size is most important when buffer is small

 Need to be optimal for 𝐾 + 1 conditional on being optimal for

1, . . , 𝐾

SIRO - Service In Random Order

41

 Equal probability to each waiting agent: 𝜑 𝑘, 𝑖 =
1

𝐾

𝜑 =

1
1/2 1/2

1/3 1/3 1/3

1/4 1/4 1/4 1/4
⋮ ⋮ ⋮ ⋮ ⋱

 Maximizing incentives for last agent to join, while

minimizing regret for agents already on the queue

SIRO – Scalable Optimal

42

Theorem: SIRO is the unique undominated

scalable policy

Proof sketch:

 Optimize for 𝐾 + 1 conditional on being optimal for 𝐾

 Minimize wait for new 𝐾 + 1 position 𝑤 𝐾+1,𝐾+1
𝜎 ≤ 𝑤

 For Bf-IC, wait for other positions is 𝑤 𝑖,𝐾+1
𝜎 ≤ 𝑤

⇒ treat all agents in the buffer-queue the same (ex-post)

0

2

4

6

8

10

12

1 2 3 4 5

E
x
p

e
c
te

d
 W

a
it

in
g
 T

im
e

k

(# agents after join)

waiting time per entry position (p=1/2)

FCFS

LIEW[5]

SIRO(5)

SIRO with 𝐾 = 5

= 𝐾𝐹𝐶𝐹𝑆 = 𝐾𝑂𝑃𝑇

43

0

2

4

6

8

10

12

1 2 3 4 5

E
x
p

e
c
te

d
 W

a
it

in
g
 T

im
e

k

(# agents after join)

waiting time per entry position (p=1/2)

FCFS

LIEW[5]

SIRO(4)

SIRO with 𝐾 = 4

= 𝐾𝐹𝐶𝐹𝑆 = 𝐾𝑂𝑃𝑇

44

= 𝐾𝑆𝐼𝑅𝑂

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 W

e
lf

a
re

 L
o

ss

FCFS

LIEW[k]

SIRO

Mechanism Comparison

45

𝑣

𝑐 = 0.1, 𝑝 = 1/2

SIRO - properties

 Parameter free

 Simple

 No positions in the queue

 No need to restrict joining when agents are symmetric

 Ex post BF-IC – waiting agents can be offered a 𝐵

 SIRO achieves better welfare that FIFO, for any

parameters and beliefs

46

Heterogeneous values

47

 % Welfare loss under mechanisms when 𝑣~U[0,1]:

c FCFS LIEW[4] SIRO

.05 2.50 3.82 2.25

.10 5.00 4.67 4.37

.15 7.43 6.66 6.53

.20 9.65 9.29 8.69

.25 12.50 11.74 10.86

.30 13.57 13.57 13.05

.35 15.19 15.19 15.19

.40 17.50 17.50 17.50

.45 20.68 20.68 20.68

.50 25.00 25.00 25.00

Conclusion

48

 Welfare in congested waiting lists

 Match quality matters, waiting time cancels out

 Need to incentivize agents to decline mismatched items

 Tractable analysis by tracking only agents who declined

items

 Closed form solutions for the stylized model

 Solving for richer environments by simulation methods

Conclusion

 The SIRO buffer-queue policy

 Lottery gives higher incentives for the marginal agent to

decline a mismatched item,

reducing waiting time fluctuation and misallocation

 Safe and parameter free

 Thank you.

49

FCFS, t=1

B

50

B

A

A+B

FCFS, t=1

B

51

B

A

A+B

FCFS, t=2

B

52

B

A

FCFS, t=2

B

53

B

A

Back

Dynamic Direct Mechanism

54

𝐴/𝐵

Item

arrives

𝛼/𝛽

Type

State 𝑠

updated

Assign/

search

Assign item

to agent

(via lottery)

Ask an

agent’s type

Start

new

period

Buffer-Queue Mechanism

55

 A dynamic direct mechanism such that:

 Ask agents only if there is no matching agent for the current

item (no asking in advanced)

 Always assign waiting agents to their preferred item

 Queue based: offers are generated by positions on a queue

System Dynamics -transitions

56

A

1 0 -1 2 -K

𝑃𝐴

Offer Queue

B

A

K

4 3

System Dynamics -transitions

57

B

𝑃𝐵𝑃𝛼𝑃𝛼𝑃𝛽

B

A

4 0 -1 2 -K K

1 3

Offer Queue

Offer Queue

System Dynamics -transitions

58

B

𝑃𝐵𝑃𝛼 … 𝑃𝛼

B

A

0 -1 -K 1 3

4

2 K

Back

