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Chicago Public Housing 
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 The Chicago public housing 

authority runs approx 20,000 

apartments, spread throughout 

the city 

 60,000 applicants wait to be 

assigned on the capped waiting 

list 

 Apartments become available 

stochastically over time as 

current tenants move out 

 



Example: private vs. social 
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 Two agents 𝑎1, 𝑎2 with equal waiting costs, 

𝑎1 prefers 𝑁, 𝑎2 prefers 𝑆 

 𝑆 item arrives in period 1 and 𝑁 item arrives in period 2 

   Possible allocations: 

I. 𝑎1 gets 𝑁, 𝑎2 gets 𝑆  and 𝑎1 waits 

II. 𝑎1 gets 𝑆,  𝑎2 gets 𝑁 and 𝑎2 waits  

 

 𝐼. is socially optimal, but 𝑎1 may prefer 𝐼𝐼. 

 



Dynamic Allocation 

 Waiting lists, items arrive stochastically over time 
 Public housing 

 Organs for transplant  

 Nursing home spots 

 Daycare centers,…  

 

 Welfare depends on the matching of items to agents 
 Agents have different preferences, which are private information 

 For example: location of family, work, school 

 Overloaded system – a matching agent is in the system, but need to 
ask agents to search for one 

 Impatient agents may misreport preferences to get assigned earlier 

 

 How should we assign items dynamically to maximize 
welfare?  
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Talk Outline 

 Model 

 2 types of agent, 2 kinds of items 

 Analyze a benchmark policy 

 Tractable formula for welfare 

 Derive optimal policy 

 New queueing policy: the uniform-wait (UW) queue 

 Simple robust policy 

 Give priority to agents who decline an item, and run a uniform 

lottery between them (SIRO) 

 Extensions 
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Model 

 Infinite pool of agents 

 Private types:  𝛼 w.p.  𝑃𝛼,  or 𝛽 w.p.  𝑃𝛽 = 1 − 𝑃𝛼  

 Identical per period waiting cost 𝑐  

 Item valuations: 

 

 

 

 One item, 𝐴 or 𝐵, arriving each period 

 𝐴 with probability 𝑃𝐴, or 𝐵 with probability 𝑃𝐵 = 1 − 𝑃𝐴 

 Items must be assigned in the period they arrive 

 For simplicity, no structural imbalance:  𝑃𝐴 = 𝑃𝛼 = 𝑝 

Value: 𝑨 𝑩 

𝛼 1 𝑣 

𝛽 𝑣 1 
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Welfare 

We aim to maximize welfare, defined as the sum of agent 

utility gains 

 

Lemma:  Maximizing welfare is equivalent to minimizing 

misallocation 

 

Intuition:  

 Overloaded system 

 ⇒  One agent assigned, all others must wait 

   Can only shift waiting time between agents 
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No Choice Policy 

 A mechanism that does not allow agents to express their 

preferences will result in random assignment 

 For example, not allowing to decline apartments 

 

 The probability of mismatch: 

 

𝜉𝑅𝑎𝑛𝑑 = 𝑃𝐴𝑃𝛽 + 𝑃𝐵 𝑃𝛼 

    =  2𝑝 1 − 𝑝  
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Benchmark Policy – FCFS  

Single line for both goods, agents can decline and keep place 

in line  

 Agents exogenously join and wait for both 𝐴 and 𝐵 

 Offer items according to First Come First Served (FCFS) 

order 

 When offered, agents can choose :  

 Take offered item 

 Decline item and keep position 

 Agents know their position in both waiting lists 
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FCFS - 𝛼’s Choice 

 Take current mismatched 𝐵  item: 

 

𝑈𝛼 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵 = 𝑣 

 

 Decline 𝐵, and stay first: 

 

E 𝑈𝛼 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐴 = 1 − 𝑐 ×
1

𝑝
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Animation 

 



FCFS - 𝛼’s Choice 

 Take current mismatched item: 
 

𝑈𝛼 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵 = 𝑣 

 

 Decline 𝐵, keep 𝑘-th position: 
 

E 𝑈𝛼 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐴 |𝑘−th 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1 − 𝑐 ×
𝑘

𝑝
 

 ≈ join the 𝑘-th position of a buffer-queue for 𝐴 
 

 Decline and avoid mismatch only if 
 

𝑘 ≤ 𝐾𝛼  =  𝑝
1 − 𝑣

𝑐
 = 𝑝 𝑤  
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Animation 
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𝑤 =  
1 − 𝑣

𝑐
 



FCFS – System Dynamics 

 Proposition: The dynamic behavior of the system can be 

captured by the state of the buffer-queue (agents who 

declined items) 

 Waiting agents who previously declined are of a single type 

 Number of 𝛼 agents  ≤ 𝐾𝛼 

 Number of 𝛽 agents  ≤ 𝐾𝛽 

 System is Markovian with the state space:  

𝑆 = {−𝐾𝛽 , … , −1 , 0, 1, 2, … , 𝐾𝛼} 

 State k>0 indicates k α-agents declined and are waiting for an 𝐴 
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System Dynamics 

1 0 𝐾𝛼 
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−𝐾𝛽  
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Welfare under FCFS 

 Expected welfare loss under FCFS buffer-queue: 

𝑊𝐹𝐿𝐹𝐶𝐹𝑆 = 1 − 𝑣 𝜉𝐹𝐶𝐹𝑆                           

                      = (1 − 𝑣)
2𝑝 1 − 𝑝

𝐾𝛼 1 − 𝑝 + 𝐾𝛽𝑝 + 1
 

 

where by the IC 

𝐾𝛼 =  𝑝
1 − 𝑣

𝑐
 , 𝐾𝛽 =  (1 − 𝑝)

1 − 𝑣

𝑐
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FCFS – Welfare Loss from Mismatch 
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𝑐 = 0.1, 𝑝 = 1/2 
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Optimal Buffer-Queue 

Can we do better? 

 Stationary mismatch probability depends only on the buffer-

queue lengths: 

𝜉 =     
2𝑝 1 − 𝑝

𝐾𝛼 1 − 𝑝 + 𝐾𝛽𝑝 + 1
 

 

 Design a buffer-queue policy to get higher 𝐾𝛼 , 𝐾𝛽 

 Avoid mismatch by placing up to 𝐾𝛼 or 𝐾𝛽 agents in buffer-queue 

 Search for matching agents until buffer-queue is full 

 Size limited by incentive constraints - agents must be willing to join 
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Optimal Buffer-Queue 

 The buffer-queue is Incentive Compatible if the expected 

wait 𝑤𝑘  at position 𝑘 ≤ 𝐾 satisfies: 

1 − 𝑐 ⋅ 𝑤𝑘 ≥ 𝑣 

or                                 𝑤𝑘 ≤ 𝑤 =
1−𝑣

𝑐
 

 

 Can optimize the 𝐴 buffer-queue independently 

 We reduced the problem to finding a policy for the buffer-

queue that minimizes balking (i.e. minimizes taking mismatch 

instead of waiting) 
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𝑤 =  
1 − 𝑣

𝑐
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𝑤 =  
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𝑐
 



Buffer-Queue Policies 

 𝐾,𝜑  queue policy  

 Up to 𝐾 agents on the buffer-queue 

 Assign item w.p.  𝜑 𝑘, 𝑖  to agent in position 𝑖 when 𝑘 agents 

are on the buffer-queue 

 Examples: 

 𝜑 𝑘, 1 = 1  ⟹ 𝐹𝐶𝐹𝑆 

 𝜑 𝑘, 𝑘 = 1  ⟹ 𝐿𝐶𝐹𝑆 
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Upper Bound 

 Lemma:  Expected wait for a random position is 

 independent of assignment probabilities: 

 

E 𝑤𝑘 =
𝐾 + 1

2𝑝
 

 

 Proposition:  There is no incentive compatible policy with 

 
                 𝐾 > 𝐾∗ = 2𝑝𝑤 − 1 
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Proof of Lemma: 

 Limit attention to when the 𝐴-queue is not empty   

 Conditional probability of having 𝑘 agents waiting is 1/𝐾 

 By Little’s law  

E 𝑤𝑘 =
𝐸 #𝑎𝑔𝑒𝑛𝑡𝑠 𝑤𝑎𝑖𝑡𝑖𝑛𝑔

𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒
=

1

𝑝
⋅  

𝑘

𝐾

𝐾

𝑘=1

 

             =
𝐾 + 1

2𝑝
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Proof of proposition: 

 For any IC policy 𝐾,𝜑  we have for every 𝑘: 

 

𝑤𝑘 ≤ 𝑤  

Therefore, expected IC holds:  

 

E 𝑤𝑘 =
𝐾 + 1

2𝑝
≤ 𝑤  

giving  

𝐾 ≤ 2𝑝𝑤 − 1 
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Optimal Policy 

 To achieve the upper bound, no position can have an 

expected wait that is greater than average (expected for 

random position)  

 Therefore, to get the optimal incentive compatible buffer-

queue policy we need all position to have the same 

expected wait  

 This requires a new queueing policy, which we name the 

Load Independent Expected Wait (LIEW) queueing policy  



A New Queueing Policy 

Definition: A 𝐾, 𝜑  queue policy is a 𝐿𝐼𝐸𝑊[𝐾] policy if for 

 all 𝑘 ≤ 𝐾 the expected wait at join is w𝑘 =
𝐾+1

2𝑝
 . 

 

Theorem:  The LIEW policy is the optimal buffer-queue 

 policy. 
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LIEW Buffer-Queue 
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Mechanisms – Welfare Loss Comparison 
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LIEW[K]
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𝑣 

𝑐 = 0.1, 𝑝 = 1/2 



Designing the LIEW policy 

Which assignment probabilities generate a LIEW queue?   
 

 Let 𝑤 = (𝑤1, …𝑤𝐾) 
 

 Setting 𝜑 =

1
1 0
⋮ ⋱
1 0 ⋯ 0

 gives FCFS and  𝑤 ⋅ 𝑝 = (1,2, . . , 𝐾) 

 

 Setting 𝜑 =

1
0 1
⋮ ⋱
0 0 ⋯ 1

 gives LCFS and  𝑤 ⋅ 𝑝 = (𝐾, . . , 2,1) 

 

 Take 𝜑 to be “in between” 
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Designing the LIEW Queue 

Start with 𝑤1: 

 

 

𝜑 =
1
1 0
1 0 0

 

 
𝑤 ⋅ 𝑝 = (1, 2, 3) 
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Designing the LIEW Queue 

Start with 𝑤1: 

 

 

𝜑 =
1
0 1
0 1 0

 

 
𝑤 ⋅ 𝑝 = (3, 1, 2) 
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Designing the LIEW Queue 

Start with 𝑤1: 

 

 

𝜑 =

1
1

2 − 𝑝

1 − 𝑝

2 − 𝑝
0 1 0

 

 

𝑤 ⋅ 𝑝 = (2, 2 −
1

2 − 𝑝
, 2 +

1

2 − 𝑝
) 
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Designing the LIEW Queue 

Shifting continuously from FCFS to LCFS to get the LIEW 
assignment probabilities: 

 

𝜑𝐿𝐼𝐸𝑊[3] =

1
1

2 − 𝑝

1 − 𝑝

2 − 𝑝

0
1

2

1

2

 

 

𝑤 ⋅ 𝑝 = (2, 2, 2) 

 

 Achieves  𝐾 = 3 when agents are willing to wait  w =
1−𝑣

𝑐
=

2

𝑝
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LIEW Policy - Issues 

 Complicated 

 

 Agent’s belief matters 

 An agent will not join the queue if his belief is that following 

agents will join as well 

 

 Parameter dependent 

 Designer needs to know 𝑝 and set 𝐾∗  

 Performs poorly when if parameters are wrong 
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Robust Buffer-Queue 

Optimize the buffer-queue while maintaining robustness 

 

 Safe for agents: incentive compatible for agents to join, 

regardless of their belief about the waiting list 

 Implies that agents do not regret joining if other agents join 

after them 

 

 Simple for designer:  a single scalable mechanism that 

applies to multiple environments 



A Policy for any Buffer-Queue Size 
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 Scalable policy:  A scalable policy 𝜑  is given by weights 

 𝑣𝑖 𝑖≤∞ such that  𝜑 𝑘, 𝑖 =
𝑣𝑖

 𝑣𝑗𝑗≤𝑘
 

 

 “Same” randomization for any queue size.  

 The mechanism can react to the parameters of the 

envioronment (𝑣, 𝑐) only by adjusting the maximal size of 

the buffer-queue 𝐾.  

 



Belief Free IC 
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 A policy 𝜑  with maximal size 𝐾 is Belief free IC if for any 

belief 𝜎 on following types  

𝑤𝑘
𝜎 ≤ 𝑤  

 Dominant strategy to report truthfully – agents are willing to decline 

mismatch regardless of their belief on the joining of future agents 

 Satisfied by FCFS 

 Lemma: a policy is BF-IC if and only if it is ex-post BF-IC, that is 

the expected wait for an agent in position 𝑖 out of 𝑘 is 

𝑤 𝑖,𝑘
𝜎 ≤ 𝑤  



Comparing Mechanisms 
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 We want to compare mechanisms without 

assumptions on the environment 

 Let 𝒦𝜑 𝑤  be the maximal 𝐾 for which 𝜑 is BF-IC 

 Definition: 𝜑  dominates 𝜓  if there is 𝑤0 such that for 

every 𝑤 ≤ 𝑤0 we have 𝒦𝜑 𝑤 ≥ 𝒦𝜑 𝜓  with strict 

inequality for some 𝑤 ≤ 𝑤0. 

 Better, or at least of length 𝒦𝜑 𝑤0  

 Increasing buffer size is most important when buffer is small 

 Need to be optimal for 𝐾 + 1 conditional on being optimal for 

1, . . , 𝐾 



SIRO - Service In Random Order 
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 Equal probability to each waiting agent:  𝜑 𝑘, 𝑖 =
1

𝐾
 

 

𝜑 =

1
1/2 1/2

1/3 1/3 1/3

1/4 1/4 1/4 1/4
⋮ ⋮ ⋮ ⋮ ⋱

 

 

 Maximizing incentives for last agent to join, while 

minimizing regret for agents already on the queue 



SIRO – Scalable Optimal 
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Theorem:  SIRO is the unique undominated 

scalable policy 

 

Proof sketch: 

 Optimize for 𝐾 + 1 conditional on being optimal for 𝐾 

 Minimize wait for new 𝐾 + 1 position 𝑤 𝐾+1,𝐾+1
𝜎 ≤ 𝑤  

 For Bf-IC, wait for other positions is  𝑤 𝑖,𝐾+1
𝜎 ≤ 𝑤  

⇒ treat all agents in the buffer-queue the same (ex-post) 
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= 𝐾𝑆𝐼𝑅𝑂 
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FCFS

LIEW[k]

SIRO

Mechanism Comparison 
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𝑣 

𝑐 = 0.1, 𝑝 = 1/2 



SIRO - properties 

 Parameter free 

 Simple 

 No positions in the queue  

 No need to restrict joining when agents are symmetric  

 Ex post BF-IC – waiting agents can be offered a 𝐵 

 SIRO achieves better welfare that FIFO, for any 

parameters and beliefs 
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Heterogeneous values 
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 % Welfare loss under mechanisms when 𝑣~U[0,1]: 

 
c FCFS LIEW[4] SIRO 

.05 2.50 3.82 2.25 

.10 5.00 4.67 4.37 

.15 7.43 6.66 6.53 

.20 9.65 9.29 8.69 

.25 12.50 11.74 10.86 

.30 13.57 13.57 13.05 

.35 15.19 15.19 15.19 

.40 17.50 17.50 17.50 

.45 20.68 20.68 20.68 

.50 25.00 25.00 25.00 



Conclusion 

48 

 Welfare in congested waiting lists  

 Match quality matters, waiting time cancels out 

 Need to incentivize agents to decline mismatched items 

 

 Tractable analysis by tracking only agents who declined 

items 

 Closed form solutions for the stylized model 

 Solving for richer environments by simulation methods 



Conclusion 

 The SIRO buffer-queue policy 

 Lottery gives higher incentives for the marginal agent to 

decline a mismatched item,  

reducing waiting time fluctuation and misallocation 

 Safe and parameter free 

 

 

 

 

 

 

 Thank you. 
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Dynamic Direct Mechanism 
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Buffer-Queue Mechanism 
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 A dynamic direct mechanism such that: 

 Ask agents only if there is no matching agent for the current 

item (no asking in advanced) 

 Always assign waiting agents to their preferred item 

 Queue based: offers are generated by positions on a queue 



System Dynamics -transitions 
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System Dynamics -transitions 
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System Dynamics -transitions 
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