Abstract:

We show that for every $\epsilon \$ there is an absolute constant $c(\epsilon) > 0$ such that the following is true: The union of any n arithmetic progressions, each of length n, with pairwise distinct differences must consist of at least $c(\epsilon) n^{2-\epsilon}$ elements.

We show also that this type of bound is essentially best possible, as we observe n arithmetic progressions, each of length n, with pairwise distinct differences such that the cardinality of their union is n^2 .

We develop some number theoretical tools that are of independent interest.

In particular we give almost tight bounds on the following question: Given n distinct integers $a_{1},...,a_{n}$ at most how many pairs satisfy $a_{j}/a_{i} \in [n]$ More tight bounds on natural related problems will be presented.

This is a joint work with Shoni Gilboa.